Norepinephrine Controls Both Torpor Initiation and Emergence via Distinct Mechanisms in the Mouse
نویسندگان
چکیده
Some mammals, including laboratory mice, enter torpor in response to food deprivation, and leptin can attenuate these bouts of torpor. We previously showed that dopamine beta-hydroxylase knockout (Dbh -/-) mice, which lack norepinephrine (NE), do not reduce circulating leptin upon fasting nor do they enter torpor. To test whether the onset of torpor in mice during a fast requires a NE-mediated reduction in circulating leptin, double mutant mice deficient in both leptin (ob/ob) and DBH (DBL MUT) were generated. Upon fasting, control and ob/ob mice entered torpor as assessed by telemetric core T(b) acquisition. While fasting failed to induce torpor in Dbh -/- mice, leptin deficiency bypassed the requirement for NE, as DBL MUT mice readily entered torpor upon fasting. These data indicate that sympathetic activation of white fat and suppression of leptin is required for the onset of torpor in the mouse. Emergence from torpor was severely retarded in DBL MUT mice, revealing a novel, leptin-independent role for NE in torpor recovery. This phenotype was mimicked by administration of a beta(3) adrenergic receptor antagonist to control mice during a torpor bout. Hence, NE signaling via beta(3) adrenergic receptors presumably in brown fat is the first neurotransmitter-receptor system identified that is required for normal recovery from torpor.
منابع مشابه
Mammalian hibernation: differential gene expression and novel application of epigenetic controls.
This review highlights current information about the regulatory mechanisms that govern gene expression during mammalian hibernation, in particular the potential role of epigenetic controls in coordinating the global suppression of transcription. Hibernation is characterized by long periods of deep torpor (when core body temperature drops to near ambient) that are interspersed with brief arousal...
متن کاملRegulation of Torpor in the Gray Mouse Lemur: Transcriptional and Translational Controls and Role of AMPK Signaling
The gray mouse lemur (Microcebus murinus) is one of few primate species that is able to enter daily torpor or prolonged hibernation in response to environmental stresses. With an emerging significance to human health research, lemurs present an optimal model for exploring molecular adaptations that regulate primate hypometabolism. A fundamental challenge is how to effectively regulate energy ex...
متن کاملP-10: Proliferative Activity of Adult Mouse Male Germ Cells Following Administration of Graded Doses of Nicotine
Background: Nicotine is considered as one of the most agents in cigarette smoking and has side effects on many organs and body systems such as reproductive tract. Nicotine can induce sub fertility or infertility both in males and females. The aim of this study was to evaluate the proliferative activity of adult mouse male germ cells following treatment with different doses of nicotine. Material...
متن کاملInduction of Antioxidant and Heat Shock Protein Responses During Torpor in the Gray Mouse Lemur, Microcebus murinus
A natural tolerance of various environmental stresses is typically supported by various cytoprotective mechanisms that protect macromolecules and promote extended viability. Among these are antioxidant defenses that help to limit damage from reactive oxygen species and chaperones that help to minimize protein misfolding or unfolding under stress conditions. To understand the molecular mechanism...
متن کاملOral tolerance for delayed type hypersensitivity contribution of local and peripheral mechanisms
Oral tolerance is a physiological immune mechanism, which controls the outcome of deleterious hypersensitivity reactions to environmental antigens absorbed through the gastrointestinal tract, and maintains homeostasis. Using a mouse model of oral tolerance of delayed type hypersensitivity to contact allergens, i.e. haptens, we have examined the mechanisms involved in the induction of oral toler...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS ONE
دوره 3 شماره
صفحات -
تاریخ انتشار 2008